skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mattoussi, Hedi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. none (Ed.)
    There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands. We employed gel electrophoresis combined with UV−vis absorption and dynamic light scattering to correlate protein adsorption with the nature and size of the ligand used. For instance, we found that AuNPs capped with DHLA alone promote nonspecific protein adsorption. In comparison, capping AuNPs with polyethylene glycol- or zwitterion-appended DHLA essentially prevents corona formation, regardless of ligand charge and size. Our results highlight the crucial role of surface chemistry and core material in protein corona formation and offer valuable information for the design of colloidal nanomaterials for biological applications. 
    more » « less
  2. Despite the impressive development of perovskite light-emitting diodes (PeLEDs), it is still challenging to achieve high-efficiency deep-blue PeLEDs using colloid perovskite quantum dots (PQDs). The efficiency of PQDs with a wavelength below 460 nm, which meets the requirements for deep-blue emission in the Telecommunication Union UHD television standard (ITU REC. 2020), lags far behind those of their sky-blue counterparts. To address this issue, a novel strategy of fast anion-exchange & cation-doping inter-promotion (FAECDIP) is proposed to achieve highly efficient deep-blue PQDs by introducing CaBr2 into the CsPbCl3 PQDs. Owing to the presence of Ca2+, the speed of ion exchange is increased, driven by the smaller cation, Ca2+, improving the preparation efficiency. Additionally, Ca2+ was doped on the surface of PQDs. Based on studies of fast anion-exchange and theoretical calculations, Ca2+ improves the optical performance by decreasing the number of traps and increasing the crystallinity of target PQDs, facilitating the stability of treated films and PeLEDs by enhancing the formation energy of halogen vacancies. Here, a high PLQY of 80.3 % CaBr2-induced CsPb(Cl/Br)3 deep-blue PQDs (~446 nm) was achieved. The correspondent PeLEDs (~447 nm) achieved a superior EQE of 5.88 %, which is the state-of-the-art among the reported deep-blue PeLEDs. Our strategy provides a potential route to achieve deep-blue PeLEDs, which differs from the previous tedious-complex methods. 
    more » « less
  3. To stabilize and transport them through complex systems, nanoparticles are often encapsulated in polymeric nanocarriers, which are tailored to specific environments. For example, a hydrophilic polymer capsule maintains circulation and stability of nanoparticles in aqueous environments. A more highly-designed nanocarrier might have a hydrophobic core and a hydrophilic shell to allow transport of hydrophobic nanoparticles and pharmaceuticals through physiological media. Polydimethylsiloxane, PDMS, is a hydrophobic material in a liquidlike state at room temperature. The preparation of stable, aqueous dispersions of PDMS droplets in water is problematic due to the intense mismatch in surface energies between PDMS and water. The present work describes the encapsulation of hydrophobic metal- and metal oxide nanoparticles within PDMS nanodroplets using flash nanoprecipitation. The PDMS is terminated by amino groups and the nanodroplet is capped with a layer of poly(styrene sulfonate), forming a glassy outer shell. The hydrophobic nanoparticles nucleate PDMS droplet formation, decreasing the droplet size. The resulting nanocomposite nanodroplets are stable in aqueous salt solutions without the use of surfactants. The hierarchical structuring, elucidated with small angle x-ray scattering, offers a new platform for the isolation and transport of hydrophobic molecules and nanoparticles through aqueous systems. 
    more » « less